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Abstract

To fully understand ecosystem functioning under global change, we need to be

able to measure the stability of ecosystem functioning at multiple spatial scales.

Although a number of stability components have been established at small spa-

tial scales, there has been little progress in scaling these measures up to the

landscape. Remote sensing data holds huge potential for studying processes at

landscape scales but requires quantitative measures that are comparable from

experimental field data to satellite remote sensing. Here we present a methodol-

ogy to extract four components of ecosystem functioning stability from satel-

lite-derived time series of Enhanced Vegetation Index (EVI) data. The four

stability components are as follows: variability, resistance, recovery time and

recovery rate in ecosystem functioning. We apply our method to the island of

Ireland to demonstrate the use of remotely sensed data to identify large distur-

bance events in productivity. Our method uses stability measures that have

been established at the field-plot scale to quantify the stability of ecosystem

functioning. This makes our method consistent with previous small-scale stabil-

ity research, whilst dealing with the unique challenges of using remotely sensed

data including noise. We encourage the use of remotely-sensed data in assessing

the stability of ecosystems at a scale that is relevant to conservation and man-

agement practices.

Introduction

Remotely sensed data products have revolutionized eco-

logical studies by allowing us to investigate ecological

processes which have previously only been studied at

small spatial scales. Making ecosystem data comparable

across spatial scale is vital if we are to fully understand

ecosystem functioning under global change. The response

of ecosystems to environmental disturbances can have sig-

nificant ecological and economic impacts (Costanza et al.

1997; Oliver et al. 2015), yet these responses have fre-

quently been established only at the plot level. The pro-

jected increase in extreme climatic events with ongoing

climate change (Beniston et al. 2007; Mora et al. 2013)

makes it imperative to better understand how systems will

respond to these events at multiple spatial scales.

Additional environmental pressures such as increased pol-

lution and pest or disease outbreaks also impact ecosys-

tem functioning (Millennium Ecosystem Assessment

2005; Seidl et al. 2016). Therefore, quantifying a system’s

stability in terms of its functioning is vital for predicting

the effects of environmental disturbances, and remote

sensing provides a unique tool to enable this.

In ecological terms, stability is a multidimensional con-

cept which captures the capacity for ecosystems to absorb

and recover from environmental disturbance in terms of

their functioning (Donohue et al. 2013, 2016; Hillebrand

et al. 2017). These characteristics have often been estab-

lished at small spatial scales using experimental manipula-

tions as environmental disturbances, such as small

grassland plot experiments (e.g. Tilman 1996; Van

Ruijven and Berendse 2010), bacterial communities in
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Petri dishes (e.g. Awasthi et al. 2014) and aquatic meso-

cosm setups (e.g. Hillebrand et al. 2017). The stability of

ecosystem functioning at large spatial scales which experi-

ence natural environmental disturbances is less well estab-

lished in the literature but has recently started to be

investigated (e.g. Lloret et al. 2007; Van Rooijen et al.

2015; Spasojevic et al. 2016). However, temporal moni-

toring of functioning over large extents is challenging,

which can make upscaling relevant measures of stability

difficult (Reyer et al. 2015; Van Rooijen et al. 2015), par-

ticularly when the exact timing and magnitude of envi-

ronmental disturbances remain unknown.

Ecological stability is often described in terms of resis-

tance, resilience and temporal variability (Grimm et al.

1992). These measures use a time series of an ecosystem

property and calculate the deviation of this property away

from its typical behaviour. Variability measures the over-

all temporal stability of a system and is frequently mea-

sured as either the coefficient of variation or the variance

(Tilman 1996; Van Rooijen et al. 2015). Resistance

reflects the capacity for a system to absorb a disturbance

(Pimm 1984; Tilman and Downing 1994; Tilman 1996).

Resilience (in terms of engineering resilience) quantifies

the post-disturbance recovery of an ecosystem property to

its equilibrium state, and is often measured as a rate

(Pimm 1984; Tilman and Downing 1994; Lhermitte et al.

2011). These are shown in Figure 1. The relationship

between different stability components can vary with dis-

turbance type (Donohue et al. 2013; Arnoldi et al. 2019),

highlighting the need to consider multiple measures of

stability simultaneously (Donohue et al. 2016) without

amalgamating them into a single measure (e.g. Holling

1973). Understanding the dynamics of multiple dimen-

sions of stability is, therefore, crucial to ecological man-

agement and needs to be measurable in both

experimental and natural systems.

Remote sensing data can provide large-scale estimates

of ecosystem productivity at a relatively high temporal

resolution using vegetation indices (Huete et al. 2002)

such as the normalised difference vegetation index

(NDVI) and the enhanced vegetation index (EVI). These

capture the greenness of vegetation within an area and

are a useful tool to assess primary productivity of vegeta-

tion (Pettorelli et al. 2005; Sims et al. 2006). Remotely

sensed vegetation indices, therefore, allow the investiga-

tion of how ecosystem productivity responds to natural

disturbances (Oehri et al. 2017) as opposed to experimen-

tal manipulations which may or may not be representa-

tive of real-world scenarios (Beier et al. 2012). They also

facilitate the investigation of a host of potential distur-

bance types, such as wildfires or land use management

(e.g. Ares et al. 2001; Goetz et al. 2006), as opposed to a

single climatic event. While it is possible to investigate

the stability of ecosystem functioning at large spatial

Figure 1. Common measures of ecosystem functioning stability where (A) is the overall temporal variability in ecosystem functioning, (B) is the

resistance, (C) is the recovery time, and (D) is the recovery rate (defined as resistance/recovery time) which is a measure of engineering resilience.

The y axis represents the anomaly in ecosystem functioning where +ve reflects values functioning greater than expected from that grid square in

that particular month, and �ve reflects functioning lower than expected from that grid square in that particular month.
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scales, significant barriers remain through the use of

remotely sensed data: (1) inherent noise within the data

due to atmospheric conditions, water, surface reflectance

properties, or shadow (Pettorelli et al. 2005; Hird and

McDermid 2009); and (2) the unknown timing of envi-

ronmental disturbances from which to measure recovery

time and resistance.

Various problems present themselves when scaling up

different stability measures to the landscape scale. For

example, the noise associated with remotely sensed data

(Samanta et al. 2012; Priyadarshi et al. 2018) can obscure

the exact timing and recovery of disturbance events. To

account for this noise within the data, some studies that

use time series of vegetation indices apply smoothing

approaches, e.g. Savitsky-Gloay filter (Ali et al. 2016;

Watmough et al. 2019). The performance of smoothing

algorithms, however, can vary (Hird and McDermid

2009; Cai et al. 2017) and can introduce bias into data

values.

Satellite-derived vegetation indices are rarely used

within the literature to estimate ecosystem stability,

although a handful of studies do exist, which look at

recovery after known disturbance events including cli-

matic events (Washington-Allen et al. 2008; De Keers-

maecker et al. 2016) and wildfires (Goetz et al. 2006;

Lhermitte et al. 2011; Spasojevic et al. 2016). In all these

cases, there is a known period of pre-disturbance and

post-disturbance, and also the presence of undisturbed

(e.g. an unburnt control plot) areas, for comparison. The

slope of the ratio of the disturbed and undisturbed vege-

tation indices through time post-burn, provides a metric

of recovery (Spasojevic et al. 2016). However, often, we

do not have a clear control with which to compare dis-

turbed systems, particularly in the context of climatic

events. Recently, stability in terms of temporal variability

has been calculated using satellite-derived EVI (Mazzo-

chini et al. 2019), however, additional stability measures

related to ecosystem recovery, analogous to those estab-

lished at the field scale, are still somewhat absent from

the literature. Therefore, a series of stability measures that

can be applied at the landscape scale, irrespective of dis-

turbance type and location need to be developed to

enable the assessment of ecosystem functioning in the

light of environmental change.

There is a need for large-scale assessments of ecosystem

stability to environmental disturbances, even when the

precise disturbance is unknown or multifaceted. In this

paper, we present a methodology to calculate a series of

stability measures using remotely sensed data. We apply

these measures to the island of Ireland where we have

anecdotal evidence of major disturbances in productivity

without underlying extreme climatic events as distur-

bances, e.g. the ‘Fodder Crisis’ of 2012-2013 (Department

of Agriculture Food and the Marine 2017; Green et al.

2018).

Materials and Methods

Data

EVI data were obtained for the geographic area of the

island of Ireland from the Moderate Resolution Imaging

Spectrometer (MODISv6; http://modis.gsfc.nasa.gov/) for

January 2003–February 2019. Sixteen-day composite

images (MODIS products MYD13Q1 and MOD13Q1)

were used to eliminate most of the cloud cover in daily

images. Images from MODIS sensors onboard both the

TERRA and AQUA satellites were downloaded so that

combined we had EVI data at a temporal resolution of

8-day intervals across the entire time period. EVI cap-

tures the photosynthetic activity of an area, i.e. its

‘greenness’, and can be used to estimate ecosystem

functioning of an area through its relationship with

above-ground biomass production (Sims et al. 2006; Shi

et al. 2017). It is calculated using the reflectance of

three wavelengths: red (620–670 nm), near infrared

(841–876 nm) and blue (459–479 nm). Other vegetation

indices exist including the Normalized Difference Vege-

tation Index (NDVI) which uses only the red and near

infrared bands. However, by incorporating the blue

band into its calculation, EVI corrects for aerosol influ-

ences. In terms of the island of Ireland, which is pre-

dominantly covered by productive grasslands (>60%
(Central Statistics Office, Ireland 2012)), EVI is particu-

larly useful as it does not saturate in high biomass con-

ditions in contrast to other vegetation indices (Huete

1988; Huete et al. 2002).

The MODIS EVI product is available at a pixel resolu-

tion of 250 9 250 m. Pixels with a reliability score less

than zero (no data) or greater than one (snow, ice or

cloudy) were removed. Additionally, any pixels with nega-

tive EVI values we set to have an EVI of 0 as this repre-

sents the absence of vegetation within the pixel. To avoid

the influence of spurious EVI measurements on stability

measures, pixels were aggregated by calculating the med-

ian at the spatial resolution of 1 9 1 km grid cells. Pixels

with less than 50% land, determined from the CORINE

2012 land cover data (http://www.eea.europa.eu), were

removed before calculating measures leaving 82 279 grid

cells.

Like most time series data, EVI contains a seasonal

component due to phenology through time, which could

mask signals of resilience (De Keersmaecker et al. 2015).

This, therefore, needs to be corrected for prior to calcu-

lating any temporal measures. To remove the seasonal

variation in EVI, the scaled EVI anomaly was calculated
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for each data point, similar to Goetz et al. (2006). The

scaled EVI anomaly, ΔEVI(i, t), of grid square i at date t is

calculated as

DEVI i; tð Þ ¼ ðEVI i; tð Þ
�meanu2m½EVI i; uð Þ�Þ=sdu2m½EVI i; uð Þ�

where EVI(i, t) is the EVI of grid square i at date t, m is

a month of the year and meanu2m[EVI(i, u)]) and

sdu2m[EVI(i, u)] are the mean and standard deviation of

EVI for grid square i over all dates, u, across the entire

period (2000–2019) falling within month m, respectively.

The anomaly, therefore, is unitless, but is on a scale

where the interval is one standard deviation of the EVI

from the grid square and the month in question. An

anomaly of zero represents a baseline value of

productivity.

Measures of stability

We developed four measures of EVI stability: variability,

resistance, recovery time and recovery rate (engineering

resilience), and applied these to EVI data from 2003 to

2019 for the island of Ireland.

When evaluating natural disturbances, as in this study,

it is necessary to identify when and where these distur-

bances have occurred or are occurring. To identify distur-

bances to EVI events, we searched the time series of EVI

anomalies at each grid square using the following

algorithm:

1 1 Record the largest negative EVI anomaly less than

�2 in the time series as well as its date, and remove

this value from the time series.

2 Remove all anomalies (i.e. data points) which fall

within 180 days each side of the recorded anomaly.

This time threshold of 180 days was selected by esti-

mating the distribution of return times (see below for

return time calculation) and determining the return

time for which it took 97.5% anomalies to return to an

anomaly of zero (i.e. the baseline).

3 Return to step 1 if an anomaly less than �2 is still pre-

sent in the time series, otherwise stop.

This algorithm gave a set of dates, T, and magni-

tudes, M, of independent EVI anomalies falling at least

two standard deviations below the zero baseline. The

pair {Tj, Mj} together is called a two-sigma event, and

we represent this as {Tj, Mj}i for the jth disturbance in

grid square i. The choice of a two standard deviation

threshold is arbitrary, and other thresholds can be used.

For example, one-sigma events, which are independent

EVI anomalies falling at least one standard deviation

below the zero baseline, could be calculated but would

represent less extreme anomalies in functioning.

Resistance

Resistance is a measure of the capacity for a system to

absorb an environmental disturbance and is usually calcu-

lated as the immediate change or drop in functioning fol-

lowing the disturbance event (Pimm 1984; Tilman and

Downing 1994). Resistance for grid square i was calcu-

lated as the reciprocal of the absolute value of the two-

sigma event magnitudes (Resistance = 1/|(Mj)i|). From all

these resistances for grid square i, we calculated the small-

est resistance and the mean resistance. Defining resistance

using the reciprocal of two-sigma event magnitudes

makes the interpretation of the resistance more intuitive

(higher resistance represents a smaller deviation from the

baseline).

Recovery time

In field experiments, the recovery of ecosystem function-

ing following a disturbance is often measured by the ratio

of control to disturbed biomass at some time following

the disturbance (Van Ruijven and Berendse 2010; Mari-

otte et al. 2013; Xu et al. 2014). However, this experi-

mental measure of recovery is a poor estimate of recovery

time because only a couple of time-points post-distur-

bance are logistically feasible.

The use of long-term time series of vegetation indices

from remote sensing data provides an opportunity to esti-

mate a recovery time that more strictly fits the definition

of engineering resilience as a measure of return to equi-

librium after a disturbance (Pimm 1984). However,

remote sensing data also poses challenges in terms of tim-

ing of disturbance events from which to measure the

recovery and substantial noise within the data, which

masks some of the recovery dynamics. To solve these

challenges, the time and magnitude of two-sigma events

using our algorithm {Tj, Mj}i were defined and then a

temporal moving window algorithm was used to reduce

the effect of noise inducing factors, such as clouds or

aerosol levels, by calculating the average EVI anomaly

within the window:

W i; tð Þ ¼
X5

s¼0

DEVI i; t þ 8sð Þ=6;

where s indexes the number of MODIS data points. The

moving window spanned 48 days (six MODIS time

points). Window sizes from three to fifteen MODIS time

points were examined and over a window size of six

MODIS time points appeared to have little effect on aver-

age anomaly (Fig. S1). Using a moving window algorithm

on the EVI anomaly provides an alternative approach to

smoothing filters which can obscure important signals
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within the data, but similarly deals with noise from poor

atmospheric conditions which can have a larger effect on

stability estimates than temporal resolution (De Keers-

maecker et al. 2014).

The recovery time, Tji, was calculated for the jth two-

sigma event in grid square i as the minimum time taken

for the moving window average, W(i,t), to become non-

negative:

Tji ¼ min t � TjijW i; tð Þ� 0& t[Tji

� �
;

where Tji is the time of the jth two-sigma event in grid

square i and t is time after this event. For each site, a sin-

gle value for return time was produced by selecting all

two-sigma events (i.e. Mji<�2 for all j) and calculating

the mean within each grid cell.

Recovery rate

The rate of recovery of the jth disturbance in grid square i

was calculated as Rji = Mji/Tji, where high values of R

represent fast rates of recovery. As with the previous mea-

sures, a single value of recovery rate for each grid square

was taken as the mean recovery rate from all two-sigma

events (i.e. Mji<�2 for all j). Including rate of recovery in

addition to recovery time is important as it accounts for

the magnitude of the anomaly.

Variability

Temporal variability in the unscaled EVI anomaly at grid

square i (vi) represents the instability in productivity in a

system across an entire time period. In the present case,

this was calculated for the time period 2003–2019.

vi ¼ sd EVI i; tð Þ �meanu2m EVI i; uð Þ½ �½ �2;

where meanu2m [EVI(i, u)] is the mean of EVI for grid

square i over all dates, u, across the entire period (2000–
2019) falling within month m and sd is the standard devi-

ation across all time points, t.

Timing of events

The dates of the disturbance to EVI (Tj) with the longest

(maximum) recovery time and slowest (minimum) recov-

ery rates in each site were calculated. These represent the

largest disturbance events to productivity.

Analyses

The relationships between the aggregated measures of sta-

bility for a grid square (variability, mean resistance, mean

recovery time, mean recovery rate, longest recovery time,

and slowest recovery rate) were estimated using Spear-

man’s rank correlations, which allow for non-linear,

monotonic correlations using the rcorr function in the R

package Hmisc (Harrell Jnr 2018). The spatial autocorre-

lation of all the measures was calculated with Moran’s I

using the moran function in the R package spdep (Bivand

et al. 2013; Bivand and Piras 2015). The timing of the

two-sigma events as well as those with the largest anoma-

lies, longest recovery times and slowest recovery rates,

were plotted. The trend in the frequency of events over

time was estimated using all two-sigma events. These

two-sigma events were pooled by year and their count fit-

ted using a generalised linear model (GLM) with a nega-

tive binomial error distribution and log link function

with number of events as the dependent variable, and

year as a quantitative independent variable using the

glm.nb function in the R package MASS (Venables and

Ripley 2002). All data processing and analyses were car-

ried out in Rv3.5.1 (R Core Team 2018). R code is avail-

able at the GitHub repository https://github.com/Hanna

hWhite/StabilityMetrics.

Results

Over the 16-year time period studied, nearly all

1 9 1 km grid cells in Ireland (99.8% of the 82279

squares) experienced at least one-two-sigma events (an

event which fell more than two standard deviations below

the baseline). The number of two-sigma events in each

grid cell ranged from 0 to 21. All stability measures

showed spatial variation across the island of Ireland

(Fig. 2) and Moran’s I (a measure of spatial autocorrela-

tion, Moran (1950)) reached zero at less than 50 km for

all the stability measures (Fig. S2).

All correlations between the stability measures were sig-

nificant at the 5% level (Fig. 3). The strongest correlation

was between recovery time and recovery rate (R = �0.62,

P < 0.001).

Visual inspection shows no clear clusters of peaks in

the time for the occurrence of two-sigma events (Fig. 4A

and B). However, clear peaks in the numbers of events

over time occurred for two stability measures: the longest

recovery time and slowest recovery rate within a square

(for example late 2009 and throughout 2012; Fig. 4C and

D). We found no evidence that two-sigma events have

become more common over time (linear term coefficient

from a negative binomial GLM = 0.0038, standard

error = 0.0034, df = 14, P = 0.26; Fig. 5).

Discussion

We present an approach that takes the definitions of

resistance, resilience, and variability which have been
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measured at the field plot scale using biomass samples

(e.g. Tilman and Downing 1994; Van Ruijven and

Berendse 2010), and scales them up using satellite-derived

EVI data, while dealing with specific properties inherent

to this type of data. Being able to measure ecosystem sta-

bility is crucial to understanding the impacts of ongoing

global change. Managing for ecosystem stability has been

called for by a number of international bodies including

the Intergovernmental Science-Policy Platform on Biodi-

versity and Ecosystem Services (IPBES; D�ıaz et al. 2015),

and is linked to multiple United Nations Sustainable

Development Goals (https://sustainabledevelopment.un.

org/). The scale at which environmental impacts on

ecosystems are measured, however, is vital, particularly in

the context of adaptive management (Reidsma et al.

2010). Models derived from small-scale ecological data

are unlikely to predict large-scale impacts of anthro-

pogenic pressures (Kerr and Ostrovsky 2003). Developing

measures to assess landscape-scale stability of vegetation

is important as this scale is relevant to management and

conservation practices to maintain the functioning of

ecosystems from which we derive a range of goods and

services (Suding 2011; Spasojevic et al. 2016; Mori et al.

2018). The availability of satellite-derived vegetation

indices has facilitated increased efforts for assessment of

ecosystem stability through cost-effective evaluation of

landscapes and their characteristics (Kerr and Ostrovsky

2003; Neigh et al. 2008). However, existing stability mea-

sures using remotely sensed data do not match the stabil-

ity measures frequently used at the field scale (e.g. Ares

et al. 2001; De Keersmaecker et al. 2015).

The approach presented here differs from the handful

of remote sensing approaches that measure stability with

respect to a particular environmental disturbance e.g. cli-

mate anomalies (Washington-Allen et al. 2008; Keers-

maecker et al. 2016), fire disturbance (Goetz et al. 2006;

Spasojevic et al. 2016; Yang et al. 2017) and human land

use change (Ares et al. 2001). Here, ecosystem function-

ing data itself (EVI, reflecting primary production) is

used to identify disturbances to ecosystem functioning

measured using the EVI anomaly, irrespective of data on

the physical environment. Frequently within the ecologi-

cal stability literature, the effect of known environmental

disturbance events is the main focus (Donohue et al.

Figure 2. Maps showing spatial variation of our EVI stability measure at a spatial resolution of 1 9 1 km. (A) temporal variation in the unscaled

EVI anomaly, (B) mean magnitude of two-sigma events, (C) mean recovery time from two-sigma events (days), (D) mean recovery rate from two-

sigma events, (E) the longest recovery time back to zero from a negative EVI anomaly (days), and (F) the slowest recovery rate.

ª 2020 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London. 359

H. J. White et al. Measuring Large-Scale Ecosystem Stability

https://sustainabledevelopment.un.org/
https://sustainabledevelopment.un.org/


www.manaraa.com

2016), however, by using data on productivity it is possi-

ble to identify disturbances to functioning and its recov-

ery, regardless of whether a known environmental

disturbance event occurred or not. Disturbances to nor-

mal ecosystem functioning such as productivity may not

always be the result of a single, extreme event and the

current method allows the investigation of both long-term

disturbances and those that result from the cumulative

impact of a combination of small environmental pressures

e.g. the fodder crisis in Ireland in 2012–2013 (Green et al.

2018).

The application of this technique to the island of Ire-

land illustrates that the majority of disturbances to EVI

with the longest recovery times fall throughout 2012

(Fig. 4C), when the fodder crisis occurred. This period

also shows a peak in the number of anomalies with the

Figure 3. Correlations (Spearman’s rho) between temporal variation in the unscaled EVI anomaly, mean magnitude of two-sigma events, mean

recovery time from two-sigma events, mean recovery rate from two-sigma events, the longest recovery time back to zero from a negative EVI

anomaly, and the slowest recovery rate at the 1 9 1 km scale. All correlations were significant using the threshold of P < 0.05.

360 ª 2020 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.

Measuring Large-Scale Ecosystem Stability H. J. White et al.



www.manaraa.com

slowest recovery rates. The 2012–2013 fodder crisis is

believed to have been a result of the combination of a

poor growing season in 2012 followed by a long winter

period (DAFM 2017). As the island of Ireland has over

50% of its land cover dedicated to improved agricultural

grassland, primarily pasture (Green et al. 2018), the signal

from this productive land class is clearly detectable within

the results. This would explain the observation that very

long recovery times followed disturbances in 2012 as the

regional climatic conditions were such that productivity

was unable to recover rapidly to baseline functioning. As

the fodder crisis was not the result of a single extreme cli-

matic event, this result clearly demonstrates that a distur-

bance in functioning can result from a combination of

environmental factors, and, therefore, may not be

detected by methods that rely on data describing extreme

environmental or climatic events. Yet, the large repercus-

sions for the Irish economy following the fodder crisis

Figure 4. Counts of disturbance events at the 1 9 1 km resolution in each month showing (A) all two-sigma events (where the EVI anomaly falls

more than two standard deviations below the baseline) in dark grey and one-sigma events in cyan, (B) the largest anomaly within each 1 9 1 km

square, (C) the anomaly with the longest recovery time and (D) the anomaly with the slowest recovery rate within each 1 9 1 km square.
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(Department of Agriculture Food and the Marine 2017),

demonstrates the need for large scale assessments of

ecosystem stability and resilience to environmental distur-

bances, even when the precise disturbance is unknown or

multifaceted.

Other peaks in the timing of events with long recovery

times and slow recovery rates correspond with known

major weather events identified by Met �Eireann (https://

www.met.i.e/climate/major-weather-events), for example,

the coldest winter in nearly 50 years in 2009/2010 (Met
�Eireann 2017) and the extremely wet summer of 2008

(Lennon and Walsh 2008). The additional cluster in the

largest anomalies within each square that occurred

towards the end of 2015 and the beginning of 2016

(Fig. 4B), however, was not captured by the measure of

long or slow recoveries. Met �Eireann do not have records

of a major weather event during this period (https://www.

met.i.e/climate/major-weather-events). It is, therefore,

likely that these events represent noise within the data

resulting from clouds or poor atmospheric conditions

(Pettorelli et al. 2005; Priyadarshi et al. 2018), and,

demonstrates the necessity to focus not just on the largest

disturbance to ecosystem functioning within an area for

studies of resistance. This also supports the approach

presented here of taking the mean drop in productivity of

all two-sigma events so that errors and biases within the

data do not obscure the overall signal.

The overall number of two-sigma events per year does

not appear to have changed between 2003 and 2018.

Although, as noted above, some of these events are likely

to be noise within the EVI data, if it is assumed that

noise levels do not vary through time, then either the

projected increase in frequency of extreme climatic events

(Beniston et al. 2007; Mora et al. 2013) does not appear

to have occurred within this relatively short time-frame,

or the ecosystem has adapted to these events thus show-

ing no increase in response signal. Applying our measures

to climatic data alongside EVI data would help determine

this.

The strongest correlation between our stability mea-

sures was between the mean recovery time and the mean

recovery rate (this was also true at the 10 9 10 km scale

Fig. S3), but generally, stability measures were only

weakly correlated. This demonstrates the multidimension-

ality of ecosystem stability but does not match the non-

independence of community stability measures outlined

by Donohue et al. (2013, 2016). Further investigation

under a multidimensional framework is needed to

Figure 5. The number of two-sigma events (anomalies which fall more than two standard deviations below the baseline) in each year across all

1 9 1 km squares. The dashed line shows the intercept of the null model.
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determine the interrelationships of our stability measures

through time and under different environmental condi-

tions to determine how the relationships vary under dif-

ferent levels of stress (Donohue et al. 2013).

Using EVI enables the determination of stability of

ecosystem functioning in terms of an area’s productivity.

The approach presented here, however, can be applied to

any dynamic measure of an ecosystem process or function

where time series data is available (Pettorelli et al. 2018),

e.g. gas regulation (Spichtinger et al. 2001) or climate reg-

ulation (Jin and Dickinson 2010), as long as the temporal

resolution of measurements is smaller than the length of

time it takes a system to recover from a disturbance.

Conclusion

Developing methods consistent with ecological theory

allow large-scale evaluation of multiple components of

stability across land covers which match those that have

been established using empirically collected field plot

data. The timing of disturbance events with long recovery

periods and slow recovery rates match anecdotal evidence,

supporting the proposed method as a means to identify

periods of disturbances to ecosystem functioning. Under-

standing stability of ecosystems at large spatial scales is

crucial if we are to fully comprehend the impacts of glo-

bal change and how best to manage large areas to main-

tain ecosystem functioning.
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Figure S1. Plot of average EVI anomaly within moving

window for various moving window sizes for 10 ran-

domly selected grid squares shown in different colours

starting at the 60th time point of the time series of EVI

anomalies (selected randomly).

Figure S2. Correlogram of Moran’s I measure of spatial

autocorrelation with distance in kilometers for the six

measures of stability at the 1 9 1 km spatial scale.

Figure S3. Correlations (Spearman’s rho) between six

measures of stability measured at the 10 9 10 km scale. *

indicate correlations where P < 0.05.
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